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rated ground state CO molecules, (iii) The linear dissocia­
tion of ethylenedione to two molecules of CO is symmetry 
forbidden and accordingly has a high activation energy, (iv) 
In contrast, dissociation of trans bent ethylenedione is sym­
metry allowed; trans bending leads easily to two separated 
molecules of CO with little or no activation energy, (v) Our 
results therefore suggest that it is unlikely that singlet ethy­
lenedione will be observed experimentally. There is a some­
what better prospect for generating and observing the trip­
let. 
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of the orbitals are optimized (rather than assumed to be 
atomic-like as in VB), and the overall form of the wave 
function is not restricted to expressions of the resonance 
form. Even so we find that the ground and first excited 
states are well described as the resonant and antiresonant 
states 

thus providing a rigorous quantum mechanical basis for the 
concept of resonance. 

II. Calculational Considerations 

A. The Wave Functions, a. Hartree-Fock. The Hartree-
Fock (HF) wave function for the ground state of allyl radi­
cal may be written in the form6 

«[<P.a<Pi/3 . . . <Ptacpvp<ptiacptiR<pT a] (1) 
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where for allyl radical there are then doubly occupied a or-
bitals, one doubly occupied x orbital, and one singly occu­
pied x orbital (here a and x indicate orbitals that are sym­
metric and antisymmetric, respectively, with respect to re­
flection through the molecular plane). Many low-lying ex­
cited states involve excitation of an electron from a x orbit­
al to a higher x orbital and are described by H F wave func­
tions of the form 

or 
a[$ ,,(P^a(Pt2PcP ^a] 

(2a) 

(2b) 

(3) 

where 4v denotes the product of all of the doubly occupied 
a orbitals (including spin terms). The electron correlation 
errors in (1) and (2) are expected to be much larger than 
for (3) due to the presence of doubly occupied X) or X2 or­
bitals in (1) and (2) but not in (3). In fact we will find that 
neither (2a) nor (2b) yields a reasonable description of the 
lowest excited state of allyl. 

b. The Valence Bond Wave Function. In the valence bond 
(VB) wave function of allyl there is a singly occupied atom­
ic x orbital on each carbon atom. We will denote these or­
bitals as xi, Xc, and Xr as indicated in (4). These orbitals 

Xc 

Xi 
(4) 

may be coupled into the two different doublet states indi­
cated in (5) and (6). 

^ N = 

< ŝ. 

Xi Xc 

Xr 

XrXc 

Xl 

= * 1 

= * 2 

(5) 

(6) 

where orbitals in the same row of the tableau in (5) or (6) 
are singlet paired {i.e., paired in a bonding manner). The 
wave functions corresponding to (5) and (6) are 

* ! = Ct[S11(X1Xc + X0Xi)xra|3a] 
= Ct[^0X1XoXr(0Z3 - M a ] 
= Ct[*,XrX1Xoa(aj3 - /3a)] 

* 2 = e[*<,(X rXo + XoXr)Xl « 0 Ot] 

= G[*„XrX0Xr(a/3 - /3 at) a] 

= «[*0XrXiXo(/3aa - aa&] 

(7a) 

(7b) 

These wave functions have the same energy and are re­
ferred to as the simple VB wave functions. It is perhaps im­
portant to note that the structures in (5) and (6) differ only 
in the way that the spin functions are coupled. They involve 
equivalent spatial orbitals. 

Allowing the wave function for the system to be a super­
position of ^ i and ^2 leads to an optimum wave function of 
the form 

* a = ^1 - *2 = ^ N - < - ^ (8a) 

with an energy lower than E\ (the energy of ^i\ or ^i), E3 

< E\, and a second wave function 

* . * 1 + * 2 -^N - ^ N (8b) 

with an energy higher than E\, Es > E\.'&a and ^ 5 are the 
antisymmetric and symmetric combinations of the simple 
VB wave functions in (5) and (6). The energy change 

ETes ~ El E, 

resulting from the favorable combinations of the VB states 
is generally called the resonance energy. We will refer to 
the energy increase 

Entires = ^ . - E1 O b ) 

occurring in the unfavorable combination ^s of VB states 
as the antiresonance energy. 

From (7) the wave functions in (8) can both be written as 

* i = a[*,XrXiXo©«] (10) 

where the spin functions 9, are 

9 a = 2aaj3 - (a/3 + /3Qf)a (11) 

9 S = -(a/3 - /3a)a (12) 

Thus proceeding from the simple valence bond wave func­
tion as in (5) or (6) to the resonance state in (8a) is equiva­
lent to optimizing the spin function in (10). 

c. The Generalized Valence Bond Wave Function. The 
generalized valence bond (GVB) wave function is formally 
the same as the VB wave function 

a [* e 0.<Mo©] (13) 

but the orbitals 0 a , 0b, and 0C and the spin coupling O are 
all solved for self-consistently3 (rather than using atomic 
orbitals as in the VB wave function). Although the GVB or­
bitals are allowed to have any shape, we will find that they 
often are each mainly concentrated near a different carbon 
atom. In such cases the optimum GVB orbitals will be de­
noted as 4>u 4>c, 4>T (indicating the location of the maximum 
amplitude of each orbital). 

There are two linearly independent ways of coupling 
three electrons into a doublet. For example, the spin func­
tions in (7a) and (7b) or alternatively the spin functions in 
(11) and (12) may be used. We will find it convenient to use 
the orthogonal spin functions of (11) and (12), denoting 
them as 

J1 = (a/3 - /3a)a 
92 = 2aa/3 - (a/3 + Qa)Ct 

(14) 

referred to as the Gl and G2 (or GF) spin functions.3 Note 
that electrons 1 and 2 are coupled into a singlet state in B\ 
and into a triplet state in 62. The optimum spin function for 
(13) is given by 

e Cy-[U-I "T C-2^2 (15) 

In discussing such wave functions it is often convenient to 
use the diagram 

(16) 

to indicate the wave function,. Ct [$,r0a0b0c0i] (that is, sin­
glet coupling of 0 a and 0b) and 

(17) 

to indicate the wave function ee[*ff0a0b0c^2] (that is, triplet 
coupling of 0 a and 0b). 

In terms of these diagrams the resonant VB state in (8a) 
can be expressed as 

Xr 

Xl 

Xc Xl Xc 

Xr 

XrXc 

Xl 
(18) 

(9a) and the antiresonant VB state (8b) can be expressed as 
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Table I. Comparison of Ground-State Energies for Allyl ALLYL RADICAL GVB PI ORBITALS 

VB 
HF 
GVB-GF' 
GVB 
CI 

Energy, hartrees 

-116.35544 
-116.377697 
-116.414974 
-116.416438 
-116.421089 

, 
eV 

1.79 
1.18 
0.17 
0.13 
0.00 

Erroi 
kcal 

41.2 
27.2 
3.8 
2.9 
0.0 

° The coefficient Ci in (15) or (30) is restricted to be zero and the 
orbitals are solved for self-consistently. 

X2A, -^J-

XrXl 

Xc 

XlXc 

Xr 

Xr Xc 

Xi 
(19) 

(compare with (10) and (H)). 
B. The Variational Equations. The basic variational equa­

tions for GVB wave functions are discussed in ref 3. Our 
current programs7,8 solve these variational equations by ex­
panding consistently through first order in the orbital cor­
rections so that within the radius of convergence the itera­
tions converge quadratically (for a fixed spin coupling). The 
orbitals and spin coupling are then optimized self-consis­
tently iteratively for each state. Thus rather than solving 
homogeneous equations 

HC = eC 

for new orbitals, C, we solve an inhomogeneous equation 

BA = -X 

where A is the correction vector (components corresponding 
to every basis function of each vector), X corresponds close­
ly to the first derivative (of the energy) vector (and goes to 
zero as convergence is obtained), and B corresponds closely 
to the second derivative matrix.7"9 (This procedure corre­
sponds to the Newton method of solving for roots of alge­
braic equations.) The matrix B is generally singular since 
some changes in the orbitals (e.g., renormalization) do not 
change the energy; however, these variations are easily 
eliminated, leading to nonsingular B matrices to invert.21-22 

For the ground state at convergence the eigenvalues of the 
(modified) B matrix are all positive indicating a real mini­
mum. Excited states have successively one or more negative 
eigenvalues since there are one or more ways of changing 
the wave function and leading to a lower energy. For the 
states considered herein there are no difficulties obtaining 
multiple roots of the same symmetry and the variational 
equations ensure rigorous upper bounds for the higher 
roots. 

C. The Core Hamiltonian. As discussed elsewhere,210"12 

the problem of finding a wave function of the form 

«[*oor e*val] 

may be reduced to that of finding the wave function 

«[*val] (20) 

if (i) the core is a product of doubly occupied orbitals and 
(ii) if the orbitals of $vai are taken to be orthogonal to those 
of $core- In solving for the valence wave function in (20), 
the Hamiltonian will have the form 

UC EM*') + 

where nK is the number of electrons in w orbitals and 

hc(i) = h(i) + JT(2Jj - K1) 
J=I 

(21) 

(22) 

- IIWIlffllll •! 
A 

Figure 1. The GVB orbitals of various states of allyl radical. The am­
plitudes are plotted in two planes perpendicular to the molecular plane. 
Each plane passes through one terminal carbon atom and through the 
central carbon atom. These planes are then joined at the central car­
bon. Long dashes indicate zero amplitude. The most diffuse contour 
has an amplitude of 0.003, and the amplitude increases by a factor of 
2.1544 at each contour, corresponding to a factor of 10 for three con­
tours. 

includes the potential due to the q doubly occupied orbitals 
of the a core in addition to the usual one-electron terms, 
h(i). This approach is valid for completely general treat­
ments of the valence wave function, including GVB or CI. 
For allyl radical, the a electron core was formed from an ab 
initio HF calculation on the ground state of allyl cation. 

D. The Basis and Other Details. The basis set consisted of 
a (9s, 5p) set of Gaussian functions on each carbon and a 
(4s) set on each hydrogen as suggested by Huzinaga.13a 

This was contracted to a double f basis (4s, 2p) on each car­
bon and (2s) on each hydrogen, as suggested by Dun­
ning.131' The above basis was supplemented by two addition­
al ir Gaussian functions14 on each carbon with orbital expo­
nents of 0.382 and 0.0127. All calculations used the fol­
lowing geometry:15 RQC — 1-40 A, J?CH = .1.08 A, and all 
bond angles = 120°. 

III. Results 
In Table I we compare the energies obtained for the 

ground state of allyl from various methods. Comparing in 
each case with the energy for full CI, the error in the GVB 
wave function is 0.13 eV = 2.9 kcal, the error in the HF 
wave function is nine times as great (27.2 kcal) and the 
error in the VB wave function is 14 times as great (41.2 
kcal). 

The GVB TT orbitals for allyl radical are depicted in Fig­
ure 1. Included in this figure are the orbitals of the ground 
state (I2A2) and of three excited states (I2Bi, 22Bj, and 
32Bi) obtained by the excitation of a x orbital. The energies 
for these wave functions are in Table II. 
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Table II. Energy Quantities for the GVB Wave Functions of AlIyI 
Radical (All Using the Same Basis) 

State 

Total 
energy, 
hartrees 

—Spin coupling"' 
Ci C2 

Excitation 
energy, 

eV 

I2A2 

PBi 
28Bi 
32B, 

-116.416438 
—116.4149746 

-116.297120 
-116.237380 
-116.209966 

-0.118« 
0.0« 
1 .C 
0.999<< 
0.999* 

0.928 
1.0 
0.0 

- 0 . 0 4 2 
0.030 

0 
(0.039) 
3.247 
4.872 
5.618 

" Refer to eq. 15. 6In this calculation the spin coupling was re­
stricted so that Ci = 0. «The orbitals are ordered as </n</>r</>c or in 
terms of Figure 1 as 0a0c<£b. dThe orbitals are ordered as <t>i<t>b<t>c. 

As can be seen from Figure 1, the lowest two states in­
volve only orbitals with the characteristic extent of atomic 
2p orbitals, hence we refer to them as valence-like states. 
The other two states each contain a very diffuse orbital and 
will be referred to as Rydberg states. 

The first excited state (I2Bi) in Figure 1 contains GVB 
orbitals each of which is localized near one of the centers. 
For the ground state, however, the optimum orbitals are 
found to be delocalized, 0a and </>b are symmetric (bi), and 
<t>c is antisymmetric (a2). We shall consider why this occurs. 

Symmetry and Delocalized Orbitals. The states in Figure 
1 all contain an odd number of electrons in IT orbitals (i.e., 
orbitals that are antisymmetric with respect to reflection on 
the molecular plane). Thus these states must each corre­
spond to either the Bi or A2 representations of the C2v sym­
metry group of allyl. To determine which we must find how 
the wave function changes upon reflection in the symmetry 
plane interchanging the terminal groups of allyl. Denoting 
this reflection as a, then 

a * . = - $ 
B l 

A2 
(23) 

From (18) the VB wave function for the ground state can 
be written as 

(24) 

that is, the xi Xr orbitals are triplet coupled. Even though 
these orbitals are not symmetry functions, the total wave 
function is of A2 symmetry since 

Xi 

Xr 

Xc 

and hence 

0 
Xi 
Xr 

Xc 

CTXl Xr 
^Xo = Xo 

^Xr = Xi 

Xr 

Xi 
Xc Xi 

Xr 
Xc 

(25) 

[the sign change for interchange of %i and Xr is obvious 
from (18)]. On the other hand, for the excited VB wave 
function in (19) we obtain 

Xl Xr 

Xc 

XrX l 

Xc = + 
X i X , 

(26) 

and hence the wave function has Bi symmetry. 
Mixing the xi and Xr orbitals as 

(P1 = cos 0Xi + sin 6\r 

0 r = - s i n Bx1 + cos 6xr 

(27) 

^ J = (cos2 6 + sin2 S) 
Xi Xc 
Xr 

(28) 

and hence the wave function and energy for the resonant 
state in (28) is unchanged by mixing the xi and Xr orbitals. 
Thus even with unsymmetric orbitals of the form (27), the 
total wave function in (28) has A2 symmetry. 

The use of (27) in (26) leads to 

0c 
= —sin 9 cos 9 

Xi Xi 

+ 

sin 9 cos 9 
X r X r 

+ (cos2 9 - sin29) 
X l X r 

Xc 
(29) 

and hence a real change in the wave function and hence in 
the energy. This new wave function (eq 29) has Bi symme­
try only if sin (20) = 0. 

On the other hand, with a mixture of the two spin cou­
plings 

or 

C1 

C1 

XlXr 

fxT 

01 0r 
0c 

+ C2 

+ c, 

Xi Xc 

X1 

01 I 0c 
0 r _ 

(30) 

(31) 

we in general get mixtures of Bi and A2 symmetry. One ex­
ception occurs: if (27) is replaced by 

( l /V2)(X l + Xr) 
(1/ /2K-X 1 + xr: 

(32) 

then the <j>u and <j)c orbitals are of bi symmetry and 4>g is of 
a2 symmetry, so that both 

and 

0u 
0g 

0u 
0c 

0c 

0g 

(33a) 

(33b) 

are of 2A2 symmetry. Thus for this particular special choice 
of the coefficients in (27), both spin couplings are allowed 
without destroying symmetry. Since the wave function in 
(28) leads to the same energy for all (nonsingular) choices 
of the coefficients and since the choice of (32) allows an ad­
ditional term (33b) of proper symmetry 

* = C, 
0u0E + C2 

0c 
(34) 

not allowed for other choices of the coefficients, we expect 
the optimum wave function to involve delocalized orbitals 
as in (32) and for small admixtures of the second spin cou­
pling (33b) to occur in (34). This is precisely what is found 
in the GVB wave function for the ground state.16 The orbit­
als are shown in Figure 1 and the spin coupling coefficients 
are Ci = -0.118 and C2 = +0.928. 

Restricting the GVB wave function so that Ci = 0 and 
solving for the optimum orbitals leads to an increase in the 
energy of 0.91 kcal.17 However, with Ci = 0 we can recom-
bine the GVB orbitals into localized orbitals, as 

we find that 

(0a - 0„)/V2 
(0 a + 0„)/)/2 (35) 
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GVB PI ORBITALS FOR THE 
VALENCE STATES OF ALLYL RADICAL 

X'A 

16.O 

-16.0 16.646 16.646 

Figure 2. The GVB orbitals of the valence states of allyl radical. For 
X2Ai those orbitals were obtained using C\ = O in eq 34 while optimiz­
ing the orbitals and then transforming using eq 35. 

leading to the orbitals in Figure 2. Note the close compari­
son of these orbitals with the GVB orbitals of the first excit­
ed state (in Figure 1). In our qualitative discussions of allyl 
we will use the localized orbitals of (35), although they 
yield an energy 0.91 kcal higher than the optimum GVB or­
bitals for the 2A2 state. 

IV. Discussion 

A. Resonance. As we saw in section HA, VB consider­
ations indicate that there should be two valence-like states 
of allyl radical, the classical resonant and antiresonant 
states, (7) and (8). In accord with the VB picture the GVB 
results lead to only two valence-like states. 

The ground and first excited states of allyl can be de­
scribed as 

and 

01 
0r 

01 
0c 

0 c J _ 

0r 

0c 01 
0r 

0c 01 
0r 

0c 0r 

01 

0c0r| 

01 

(36) 

(37) 

using for ip\, <pc, and <#• either the atomic orbitals (i.e., VB) 
or the localized orbitals from self-consistent GVB calcula­
tions on either the ground or excited states. From (36) we 
will define the resonance energy (of the ground state) of 
allyl as the energy stabilization of the resonant wave func­
tion in (36) as compared with the single configuration wave 
function 

0c 0 
(38) 

using the same orbitals. That is 

£rt, = £ ( ^ N ) - M ^ N - S*0 (39) 
Similarly from (37) we define the antiresonance (of the ex­
cited state) of allyl as the destabilization energy of the an­
tiresonant wave function in (37) as compared with the same 
single configuration wave function in (38). 

EnMim = £ ( ^ \ + ^ S ) - £ ( ^ N ) (40) 

Using the atomic ir orbitals we find that the resonance 
energy18 is 

ETes = 15.9 kcal 

Table ETI. The Resonance Energies and 
Related Quantities for Allyl Radical 

-Orbitals used-

Atomic 
(VB) 

GVB (2A2) 
ground 
state" 

GVB (2B1) 
excited 
state 

-116.33012» -116.39681 

-116/35544 -116.41499 

Resonance energy 
2A2, kcal 

Antiresonance 
energy 2Bi, kcal 

-116.23784 
15.89 

57.93 

-116.28663 
11.40 

69.16 

-116.39579 
-116.41080 

-116.29712 
9.42 

61.94 

*r 

Destabilization 
energy 2Bi, kcal 

-116.27173« -116.338301 -116.34502 

21.27 32.44 30.07 

" The orbitals used here are the localized orbitals from the GF spin 
coupling (Ci = 0 in eq 15). This wave function leads to an energy 
0.91 kcal above the optimum energy of the 2A2 state. b This wave 
function has orbitals <pi and <t>c coupled into a triplet state and then 
</>r is coupled to yield a doublet. " Using ethylene :r orbitals for 4>\ 
and <£o and the methylene (3Bi) ir orbital for <j>T yields energies of 
-116.36823 and -116.27606 for the Gl'and GF coupled wave 
functions. 

while the antiresonance energy is 

Entires = 57.9 kcal 

With the optimum localized GVB orbitals from the ground 
state we find 

Eres = 11.4 kcal 

Entires = 69 .2 k c a l 

and using the optimum GVB orbitals from the excited state 
leads to 

Evea = 9.4 kcal 

Entires = 6 1 . 9 k C a l 

(See Table III for a tabulation of the energies.) The best es­
timate of the resonance energy is that using the ground 
state orbitals, i.e., ETes = 1 1 . 4 kcal; we include the other 
values partly to indicate how little the resonance energy 
changes with rather large changes in the orbitals (for exam­
ple the VB wave function yields a ground state energy 38.3 
kcal higher than that of the GVB wave function). 

This theoretical estimate of 11.4 kcal for the resonance 
energy is in reasonable agreement with the value of 11.6 ± 
2 kcal from thermochemical considerations.18 Note that the 
experimental value is obtained by comparing the heat of 
formation of allyl with that expected for a structure with lo­
calized bonds (and hence different bond lengths). To distin­
guish these quantitites the quantity we report is often called 
the vertical resonance energy. 

From Table II we see that the antiresonance energies are 
much larger than the resonance energies. This arises from 
the nonorthogonality of the wave functions 

S ^ . and ^ ^ s - (41) 

Using (36) and (37) the energies are given as 

and 

M2A2) 

S(2B1) = 

Hu 
1 

Hu 

+ 
+ 

— 

Hn 
S 

Hu 

(Hn - SHn) 
Hii + (1 + S) 

Hn-

S) 

(Hn - SHn) 
(1 - S) 

(42) 

where H\ \ is the energy of (the normalized) wave function 
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Figure 3. A comparison of the VB and GVB resonance and stabiliza­
tion energies for the valence state of allyl radical. 

38; 5" is the overlap between the two wave functions of (41) 
and H\2 is the Hamiltonian matrix element between these 
wave functions. From (42) we see that 

Et*a/Eu = (1 - S)/(l + S) (43) 

The orbitals of the VB, GVB (2A2), and GVB (2B,) wave 
functions lead to S = 0.57, S = 0.72, and S = 0.71, respec­
tively, suggesting a ratio of ~1,4 for (43). 

B. The Fused Ethylene Model. An alternative approach to 
building up the states of allyl is to start with the states of 
ethylene and to examine how these states are modified by 
fusing a third T orbital onto the ethylene.19 The GVB de­
scription of ethylene2 yields two valence-like states, the 
ground (N) state and the first excited triplet (T) state, 
which can be described as 

N: 0,0c 

T: 0. 

(44) 

(45) 

in terms of localized orbitals on the left and center carbons. 
These states are found to be separated by 4.24 eV = 98 
kcal17 in the GVB description. Fusing on the <j>T orbital 
leads then to zero-order (doublet) states of the form 

and 

010c 
0, 

01 
0c 

0r 

(46) 

(47) 

Letting the orbitals of (46) and (47) relax, we may consider 
that the ground state (2A2) of allyl arises from (46), being 
stabilized by the amount of the resonance energy, 11.4 kcal. 
The first excited state of allyl can then be viewed as arising 
from the excited state (47) of ethylene, with a destabiliza-
tion energy of 

% 

10.0 

9 . 0 -

8.0-

7.0-

6 .0 -> 
CD 
CC 
UJ 5.0 
Z 
U 
LU 4.0 
> 

< 3.0 
IxI 
ce 

2.0 

1.0 

0.0 

ALLYL RADICAL 

~ 10N(1A1) 

/32B1(R) 

~ S22A2(R) 

22B|(R) 

TBi(V) 

'A 2 -

MO GVB-CI GVB 
T A 2 ( V ) -

CI 
MINIMAL BASIS FULL BASIS 

Figure 4. The relative energies of the MO, GVB, and CI wave func­
tions. AU energies are relative to the full CI wave function. 

Table IV. Allyl Radical Energies Using a Minimum Basis Set" 
(Energies in Hartrees) 

State 

I2A2 

I1B1 

21B, 

31B1 

Full CI 

-116.411955 
(-116.421089)6 

-116.281236 
(-116.303426)" 
-116.084705 

(-116.248310)6 

-115.835376 
(-116.219937)*" 

.—Dominant configurations—N 

Configuration 

(IbO2CIa2) 

(Ib1)(Ia2)2 

(Ib1)KIb1) 
(Ib1)KIa2)2 

(Ib1)KIb1) 
(la2)K2b,) 
( lbj ) (2bj) 2 

Energy (single 
config) 

-116.375139« 

-116.176541 
-116.145339 
-116.176541 
-116.145339 
-115.817880 
-115.769586 

<* Using the natural orbitals from the GVB wave function. 
6 Energies from the full CI calculations using the full basis.c Solving 
self-consistently for the HF wave function in the full basis leads to 
-116.377697. 

£des.ab = £ ( ^ S + S^*) - EIA1} = 30.1 kcal 

(48) 

(using the excited state orbitals). These views are illustrated 
in Figure 3. 

In this view the 2A2 —• 2Bi excitation energy of allyl 
should be comparable to the N —• T excitation energy of 
ethylene. In fact the numbers are 3.2 eV for allyl and 4.2 
eV for ethylene. The basic reason for the decrease in the ex­
citation energy in going from ethylene to allyl is that (46) 
involves an antibonding interaction between the new orbital 
4>r and the ethylene N state orbitals 0i and <j>c while (47) in­
volves bonding interactions between <t>r and the ethylene T 
state orbitals.20 Thus the energy separation between (46) 
and (47) is only 2.5 eV. The stabilization and destabiliza-
tion effects attendant to the relaxation of the wave func­
tions in (46) and (47) to obtain the optimum wave functions 
then leads to an increase in the energy separation by 0.7 eV 
yielding the final excitation energy of 3.2 eV. 

C. Comparison of GVB and MO Descriptions. In the sim­
ple MO description of allyl there are three MO's: lbi is the 
doubly occupied bonding MO, Ia 2 is the singly occupied 
MO, and 2bi is the empty antibonding MO. The ground 
state is then 

2A2: (Ib1)HIa2) (49) 
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State 

I2A2 

I2Bi 
22Bi 
22A2 

32B, 
Allyl cation 

GVB 

-116.416438 
-116.297120 
-116.237380 

-116.209966 
-116.163675 

CI Full" 

-116.421089 
-116.303426 
-116.248310 
-116.222188 
-116.219937 
-116.173420 

Eci — £GVB 

-0.004651 
-0.006306 
-0.010930 

-0.009971 
-0.009745 

CI Singles1-

-116.399944 
-116.222573 
-116.197000 
-116.187229 
-116.175801 

" Full CI within r space.h Only single excitations from dominant configuration allowed. 

and excited states are obtained by exciting from la2 or lbi 
to 2bi or la2. 

'B 1 : 
2B1 : 

4 '2A,: 

(lb1)2(2b1) 

(Ib1)(Ia2)2 

(Ib1)(Ia2)^b1) 

(50) 

(51) 

(52) 

In this description one would expect either (50) or (51) to 
be the first excited state, correctly predicting the symmetry 
of this state. 

We now want to compare the MO and GVB descriptions. 
However, since the model in (49)-(52) is clearly only capa­
ble of describing valence excited states, we will compare 
these methods using wave functions based on just three va­
lence-like orbitals,21 lbi , la2, and 2bi. The results are indi­
cated in Figure 4 and Table IV. 

The MO description leads to the ( lbi) ( la2) 2 state at 5.4 
eV excitation energy and the (lbi)2(2bi) state at 6.3 eV. 
However, in the GVB-CI description the first 2Bi state is at 
3.6 eV while the second is at 8.9 eV. The problem here is 
that to expand the GVB wave function for the antiresonant 
state in (37) in terms of MO's requires both the ( lb i ) ( la2) 2 

and (lbj)2(2bi) configurations with rougly equal coeffi­
cients. The first excited state of allyl is simply not described 
by either MO configuration. 

As a further test of the MO approach we included the 
full basis (12 functions) and carried out a CI calculation al­
lowing all single excitations from (49). This should closely 
approximate the HF wave functions for the excited states. 
As shown in Table V this does not eliminate the problem 
with the HF description of the first 2Bi state. This difficulty 
is intrinsic to the single Slater determinant form of the H F 
wave function and hence is not overcome by carrying out 
HF calculations with a complete basis. 

On the other hand with the GVB description one obtains 
a quantitatively accurate description of both the ground and 
first excited state of allyl as simply a recoupling of the spin 
functions. 

As will be reported in later papers we have carried out 
similar studies on the lower excited states of butadiene22 

and benzene8 finding exactly the same situation. The va­
lence excited states involve essentially a recoupling of the 
spin functions and are well described with the GVB wave 
functions but very poorly described with MO's. 

D. Excitation Energies. In Table V we present the results 
of configuration interaction (CI) calculations performed on 
allyl radical using the identical basis set and a electron core 
as was used for the GVB calculations. First, we note that 
there is good agreement between the results of the GVB and 
full CI calculations. For example, for the ground state the 
difference between GVB and CI is only 0.00465 hartree = 
0.127 eV. This close agreement with the full CI wave func­
tion justifies interpreting the wave function in terms of 
GVB orbitals. 

In Table VI, excitation energies from various sources are 
compared. Experimental results lead to transitions at 3.04 
eV23a and 5.0 eV23b in reasonable agreement with our re­
sults of 3.2 eV and 4.9 eV. The best previous theoretical 

State 

2A2 
2Bi 
22Bi 
22A2 

32B1 

Cation 

-—Present work—. 
GVB 

0 
3.25 
4.87 

5.62 
7.04 

Full CI 

0 
3.20 
4.70 
5.41 
5.47 
6.74 

(ab init 
CI)15 

0 
3.79 
8.0 

Table VI. Excitation Energies for Allyl Radical (All Values in eV) 

Peyerimhoff Hirst and 
& Buenker Linnett 

(semiempirical 
CI)» 

0 
2.42 
9.791 

» D. M. Hirst and J. W. Linnett, /. Chem. Soc, 1035 (1962). 

studies15 used a less extensive valence basis and omitted dif­
fuse functions. As a result they miss the Rydberg excited 
states and obtained a I2Bi •*- 2A2 excitation energy 0.7 eV 
higher than our value. 

From Figure 1 we see that the 22Bi and 32Bi states each 
involve one very diffuse orbital, i.e., a Rydberg orbital. 
From the shapes of the orbitals the 22Bi state should corre­
spond to a 

(22B1) Ia2 — 3Pb1 (53) 

excitation while the 32Bi state should correspond to a 

(32B1) Ia2 3db, (54) 

excitation (the dir orbital is in the reflection plane perpen­
dicular to the molecule). Although we did not solve for the 
GVB orbitals of the 2A2 Rydberg states, we found from our 
CI calculations that a 2A2 state is 0.006 eV lower than the 
32Bi state. This is consistent with the description in (54) for 
32Bi since 

(22A2) Ia2 3da, (55) 

would be expected to be close to (54). 
Our calculated quantum defects are 5(22Bi) = 0.40 and 

5(32Bi) = -0 .29 . The value for the 3p orbital is consistent 
with the typical value of 0.50 (e.g., 5ip = 0.50 for butadi­
ene24) for np Rydberg orbitals. Usually nd Rydberg orbitals 
have 8 ~ 0. Our negative value reflects the inadequency of 
our basis for describing d Rydberg states. 

V. Summary 

The generalized valence bond description of allyl radical 
is quantitatively accurate, leading to energies only a few ki-
localories from full configuration interaction calculations. 
Qualitatively the GVB wave functions lead to a description 
of the ground and first excited states of allyl in close agree­
ment with the usual valence bond idea of resonating struc­
tures. 

Indeed the calculated resonance energy of 11.4 kcal is in 
reasonable agreement with thermochemical estimates of the 
excitation stabilization energy of allyl radical. These results 
provide a direct rigorous quantum mechanical verification 
of the validity of the concept of resonance. 
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Abstract: A nonempirical valence-only LCAO-MO-SCF method is presented based on an adaption of the Phillips-Klein-
man pseudopotential to replace orthogonality constraints and on representation of the core-valence coulomb and exchange 
interactions by an exponential screening function. Computation times are greatly reduced compared to full ab initio calcula­
tions. Results are reported for main-group atoms up to atomic number 36, and for the molecules Ci, Si2, Ge2, and PF3. These 
are compared to conventional SCF results and, for C2 and PF3, with experiment. 

Despite rapid advances in computer technology in the 
last decade, ab initio calculations on relatively small mole­
cules containing elements of atomic number greater than 18 
(Ar) are still expensive and far from routine. Since the ex­
pense of a calculation increases roughly as the fourth power 
of the number of basis functions, even a 1000-fold increase 
in computer speed would allow only a six-fold increase in 
the complexity of a system to be investigated within the 
same computational time. Thus, investigation of many 
chemical problems using conventional ab initio methods 
does not seem possible in the near future. 

The success of semiempirical MO methods has been 
largely limited to elements of atomic number less than 10 
(Ne), due to lack of reliable spectroscopic data on the heav­
ier elements and to the breakdown of the common approxi­
mations for the various integrals. As an example of the lat­
ter, most methods take the off-diagonal core-hamiltonian 
integral H^ as proportional to the overlap integral between 
orbitals a and b. 

kS, (D 

Jug1 has shown that this approximation is poor for pff-pff in­
tegrals over symmetrically orthogonalized orbitals. Equa­
tion 1 constrains / / a b to have the same sign as S^b, but, ac­
cording to Jug, this is not necessarily the case at all. This 
problem is even more severe with integrals over d orbitals. 
Thus, the prospects for successful simple extension of 
semiempirical methods to the heavier elements appear dim. 

In this paper we will outline a third and potentially much 
more useful approach for predicting the properties of inor­
ganic compounds. This involves partitioning of the mole­
cule's electronic distribution into "valence" and "core" or­
bitals. Such a partitioning allows the valence orbitals to be 
treated by comparatively rigorous ab initio techniques, with 
a minimal amount of labor. The distinction between bond­
ing valence electrons and non-bonding core electrons is 
widely applied in many fields of chemistry; partitioning 
techniques use this distinction to its greatest possible com­
putational advantage. 

The theory of core-valence separation was widely studied 
in the early days of quantum chemistry2"11 and also has 
been the subject of considerable recent interest.12"24 In the 
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